skip to main content


Search for: All records

Creators/Authors contains: "Petel, Brittney E."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
    Polyoxovanadate (POV) clusters are an important subclass of polyoxometalates with a broad range of molecular compositions and physicochemical properties. One relatively underdeveloped application of these polynuclear assemblies involves their use as atomically precise, homogenous molecular models for bulk metal oxides. Given the structural and electronic similarities of POVs and extended vanadium oxide materials, as well as the relative ease of modifying the homogenous congeners, investigation of the chemical and physical properties of pristine and modified cluster complexes presents a method toward understanding the influence of structural modifications ( e.g. crystal structure/phase, chemical makeup of surface ligands, elemental dopants) on the properties of extended solids. This review summarises recent advances in the use of POV clusters as atomically precise models for bulk metal oxides, with particular focus on the assembly of vanadium oxide clusters and the consequences of altering the molecular composition of the assembly via organofunctionalization and the incorporation of elemental “dopants”. 
    more » « less
  2. Abstract

    Lindqvist polyoxovanadate‐alkoxide (POV‐alkoxide) clusters are excellent candidates for applications in energy storage and conversion due to their rich electrochemical profiles. One approach to tune the redox properties of these cluster complexes is through substitutional cationic doping within the hexavanadate core. Here, we report the synthesis of a series of tungsten‐substituted POV‐alkoxide clusters with one and two tungsten atoms. Soft landing of mass‐selected ions was used to purify heterometal POV‐alkoxides that cannot be readily separated using conventional approaches. The soft landed POV‐alkoxides are characterized using infrared reflection‐absorption spectroscopy and electrospray ionization mass spectrometry. The redox properties of the isolated ions are examined using an in situ electrochemical cell which enables traditional in vacuo electrochemical measurements inside of an ion soft landing instrument. Although the overall cluster core retains redox activity after tungsten doping, vanadium‐based redox couples (VV/VIV) are shifted substantially, indicating a pronounced effect of a heteroatom on the electronic structure of the core.

     
    more » « less
  3. null (Ed.)
    Reducible metal oxides (RMOs) are widely used materials in heterogeneous catalysis due to their ability to facilitate the conversion of energy-poor substrates to energy-rich chemical fuels and feedstocks. Theoretical investigations have modeled the role of RMOs in catalysis and found they traditionally follow a mechanism in which the generation of oxygen-atom vacancies is crucial for the high activity of these solid supports. However, limited spectroscopic techniques for in situ analysis renders the identification of the reactivity of individual oxygen-atom vacancies on RMOs challenging. These obstacles can be circumvented through the use of homogeneous complexes as molecular models for metal oxides, such as polyoxometalates. Summarized herein, a sub-class of polyoxometalates, polyoxovanadate–alkoxide clusters, ([V 6 O 7 (OR) 12 ] n ; R = CH 3 , C 2 H 5 ; n = 2−, 1−, 0), are explored as homogeneous molecular models for bulk vanadium oxide. A series of synthetic strategies have been employed to access oxygen-deficient vanadium oxide assemblies, including addition of V(Mes) 3 (thf), tertiary phosphanes, and organic acids to plenary Lindqvist motifs. We further detail investigations surrounding the ability of these oxygen-deficient sites to mediate reductive transformations such as O 2 and NO x 1− ( x = 2, 3) activation. 
    more » « less
  4. Here, we present the first example of acid-induced, oxygen-atom abstraction from the surface of a polyoxometalate cluster. Generation of the oxygen-deficient vanadium oxide, [V6O6(OC2H5)12]1−, was confirmed via independent synthesis. Spectroscopic analysis using infrared and electronic absorption spectroscopies affords resolution of the electronic structure of the oxygen-deficient cluster (oxidation state distribution = [VIIIVIV 5]). This work has direct implications toward the elucidation of possible mechanisms of acid-assisted vacancy formation in bulk transition metal oxides, in particular electron−proton codoping that has recently been described for vanadium oxide (VO2). Ultimately, these molecular models deepen our understanding of protondependent redox chemistry of transition metal oxide surfaces. 
    more » « less
  5. We report the activation of nitrogen-containing oxyanions using an oxygen-deficient polyoxovanadate–alkoxide cluster. Reduction of NO 2 1− and NO 3 1− results in near-quantitative oxygen atom transfer to the coordinatively unsaturated V III ion, and selective formation of NO. These results provide insight into possible mechanisms of oxyanion reduction by polyoxometalates. 
    more » « less
  6. Here, we expand on the synthesis and characterization of chloride-functionalized polyoxovanadate-alkoxide (POV-alkoxide) clusters, to include the halogenation of mixed-valent vanadium oxide assemblies. These findings build on our previously disclosed results describing the preparation of a mono-anionic chloride-functionalized cluster, [V 6 O 6 Cl(OC 2 H 5 ) 12 ] 1− , by chlorination of [V 6 O 7 (OC 2 H 5 ) 12 ] 2− with AlCl 3 , aimed at understanding the electronic consequences of the introduction of halide-defects in bulk metal oxides ( e.g. VO 2 ). While chlorination of the mixed-valent POV-ethoxide clusters was not possible using AlCl 3 , we have found that the chloride-substituted oxidized derivatives of the Lindqvist vanadium-oxide clusters can be formed using TiCl 3 (thf) 3 with [V 6 O 7 (OC 2 H 5 ) 12 ] n ( n = 1−, 0) or WCl 6 with [V 6 O 7 (OC 2 H 5 ) 12 ] 0 . Characterization of the chloride-containing products, [V 6 O 6 Cl(OC 2 H 5 ) 12 ] n ( n = 0, 1+), was accomplished via 1 H NMR spectroscopy, X-ray crystallography, and elemental analysis. Electronic analysis of the redox series of Cl-doped POV-alkoxide clusters via infrared and electronic absorption spectroscopies revealed all redox events are localized to the vanadyl portion of the cluster, with the site differentiated V III –Cl moiety retaining its reduced oxidation state across a 1.9 V window. These results present new synthetic routes for accessing chloride-doped POV-alkoxide clusters from mixed-valent vanadium oxide precursors. 
    more » « less
  7. We report a rare example of oxygen atom transfer (OAT) from a polyoxometalate cluster to a series of tertiary phosphanes. Addition of PR 3 (PR 3 = PMe 3 , PMe 2 Ph, PMePh 2 , PPh 3 ) to a neutral methoxide-bridged polyoxovanadate-alkoxide (POV-alkoxide) cluster, [V 6 O 7 (OMe) 12 ] 0 , results in isolation of a reduced structure with phosphine oxide datively coordinated to a site-differentiated V III ion. A positive correlation between the steric and electronic properties of the phosphane and the reaction rate was observed. Further investigation of the steric influence of the alkoxy-bridged clusters on OAT was probed through the use of POV clusters with bridging alkoxide ligands of varying chain length ([V 6 O 7 (OR′) 12 ]; R′ = Et, n Pr). These investigations expose that steric hinderance of the vanadyl moieties has significant influence on the rate of OAT. Finally, we report the reactivity of the reduced POV-alkoxide clusters with styrene oxide, resulting in the deoxygenation of the substrate to generate styrene. This result is the first example of epoxide deoxygenation using homometallic polyoxometalate clusters, demonstrating the potential for mono-vacant Lindqvist clusters to catalyze the removal of oxygen atoms from organic substrates. 
    more » « less